
Prerequisite: Grade of C or higher in Calculus II (MA2320) and Discrete Mathematics (MA3030)

COURSE DESCRIPTION: An introduction to concepts commonly used in advanced mathematics with an emphasis on writing proofs. Topics include logic, set theory, relations, functions, and cardinality as well as selected topics from other areas of advanced mathematics such as number theory, abstract algebra, topology, and real analysis.

GOALS & OBJECTIVES: The main goal of this course is to prepare students for higher level courses in mathematics. This is done by engaging students in problem solving techniques and mathematical reasoning that presage higher level topics. Through examples and exercises, students will develop their mathematical reasoning ability – the ability to read and write proofs. The mathematical reasoning is practiced on fundamental topics that are needed for success in advanced mathematics courses. These topics include sets, relations, functions, properties of numbers, and cardinalities of sets. After successful completion of the course students should be able to demonstrate the ability to write mathematical proofs that are convincing, readable, notational consistent, and grammatically correct.

COURSE EVALUATION & GRADING: Course grade will be based on midterm exams, quizzes, assignments, and Final Exam. The Final exam is cumulative and it counts at least 30% of the course grade. The grading scale is as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>[94, 100]</td>
</tr>
<tr>
<td>A-</td>
<td>[90, 93]</td>
</tr>
<tr>
<td>B</td>
<td>[84, 86]</td>
</tr>
<tr>
<td>B-</td>
<td>[80, 83]</td>
</tr>
<tr>
<td>C</td>
<td>[74, 76]</td>
</tr>
<tr>
<td>C-</td>
<td>[70, 73]</td>
</tr>
<tr>
<td>D</td>
<td>[64, 66]</td>
</tr>
<tr>
<td>D-</td>
<td>[60, 63]</td>
</tr>
<tr>
<td>F</td>
<td>[0, 59]</td>
</tr>
</tbody>
</table>

TUTORIAL: Drop-in tutorial is available in the Mathematics Learning Center.
TOPICS TO BE COVERED

Review of Proof Methods
 Mathematical Induction

Equivalence Relations
 Relations
 Properties of Relations
 Equivalence Relations
 Properties of Equivalence Classes
 Congruence Modulo \(n \)
 The Integers Modulo \(n \)

Functions
 The Definition of Function
 One-to-one and Onto Functions
 Bijective Functions
 Composition of Functions
 Inverse Functions
 Permutations

Cardinalities of Sets
 Numerically Equivalent Sets
 Denumerable Sets
 Uncountable Sets
 Comparing Cardinalities of Sets
 The Schröder-Bernstein Theorem

Number Theory
 Divisibility Properties of Integers
 The Division Algorithm
 Greatest Common Divisors
 The Euclidean Algorithm
 Relatively Prime Integers
 The Fundamental Theorem of Arithmetic
Group Theory
 Binary Operations
 Groups
 Permutation Groups
 Fundamental Properties of Groups
 Subgroups
 Isomorphic Groups

Calculus
 Limits of Sequences
 Infinite Series
 Limits of Functions
 Fundamental Properties of Limits of Functions
 Continuity
 Differentiability

Topology (*Time permitting*)
 Metric Spaces
 Open Sets in Metric Spaces
 Continuity in Metric Spaces
 Topological Spaces
 Continuity in Topological Spaces