

DEPARTMENT OF MATHEMATICS AND COMPUTER & INFORMATION SCIENCE

SYLLABUS

DATABASE MANAGEMENT SYSTEMS CS4550

Prerequisite: Grade of C or higher in Computer Programming II–CS **2511** and Data Structures & Algorithms–CS **3810**.

COURSE DESCRIPTION:

Basic concepts: data, information, data independence and need for DBMS facilities. The relational model: schema, subschema, relational algebra, relational calculus, Database design: entity-relationship (ER) model and normal forms. Interacting with database with SQL, Advanced SQL: Trigger, stored procedures. Performance considerations, integrity, security and transaction processing. Project using MySQL.

COURSE OBJECTIVES: Students successfully completing this course will be able to:

- 1. Design a relational database, given data requirements
- 2. Tune the performance for relational databases.
- 3. Write efficient SQL queries
- 4. Understand the basics of relational databases: relational model, relational algebra, query processing, and query optimization.
- 5. Understand the translation from SQL queries to physical query plans
- 6. Understand the basis of concurrency control
- 7. Demonstrate the ability to properly document a database system and programming assignments.

TEXTBOOKS:

- Database Systems: Design, Implementation, and Management, 13 Edition by Coronel & Morris. ISBN:9781337627900
- Elmasri, Ramez, and Shamkant B. Navathe. Fundamentals of Database Systems,
 7thEdition. Pearson Education Limited, 2015. SBN-13: 978-0133970777

Topics Covered*:

- 1. Database Concepts: Database Systems & Data Models (Chapters 1 & 2)
 - a. Difference between DB, DBMS and DB Applications Program
 - b. Evolution of data processing
 - c. Data and program independence
 - d. Data models and database schemas
- 2. Design Concepts: Relational database model & ER Modeling (Chapters 3 & 4)
 - a. keys, dependencies
 - b. Relational Algebra
 - c. Relationships within the Relational Database
 - d. ER Model
- 3. Design Concepts: Advanced Data Modeling & Normalization (Chapters 5 & 6)
 - a. Extended ER Model
 - b. Normal Forms
 - c. Normalization Process
- 4. Advanced Design & Implementation: SQL & Advanced SQL (Chapters 7 & 8)
 - a. DDL: CREATE, ALTER, DROP
 - b. DML: SELECT, set operations: UNION, INTERSECT, JOIN, Aggregates, Subqueries
 - c. Views
 - d. Procedural SQL (Triggers, Procedures)
- 5. Advanced Database Concepts: Transaction Management & Concurrency Control (Chapter 10)
 - a. Transactional properties & Management
 - b. Concurrency Control- lost updates, uncommitted data, inconsistent retrievals
 - c. Concurrency control with Locks and Timestamping
- 6. Advanced Database Concepts: Query processing and Optimization (Chapter 11)
 - a. Ouery Processing
 - b. Indexes & Query optimization

^{*} The instructor has the right to update the contents if needed.